Titanium Grades (for your ultralight projects)

October 8th, 2014 by h2

Ok, ok, I know, you are saying, who cares? But I was curious about titanium wire grades (for my ultralight titanium pot stands) so I found this chart here.

Element Composition,%
Grade1 Grade2 Grade3 Grade4 Grade5 Grade6 Grade7 Grade9 Grade11 Grade12
N max 0.03 0.03 0.05 0.05 0.05 0.03 0.03 0.03 0.03 0.03
C max 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
H max 0.05 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
Fe max 0.2 0.3 0.3 0.5 0.4 0.3 0.5 0.25 0.2 0.3
O max 0.18 0.25 0.35 0.4 0.2 0.2 0.25 0.15 0.18 0.25
Al 5.5-6.75 4.0-4.6 2.5-3.5
V 3.5-4.5 2.0-3.0

Note that lower grades are really soft, so I wanted to know what grade 5 is. Now I know.

Further, from wikipedia we learn:

Grade 1 is the most ductile and softest titanium alloy. It is a good solution for cold forming and corrosive environments. ASME SB-265 provides the standards for grade 1 titanium sheet and plate.[4]

Grade 2 Unalloyed titanium, standard oxygen.

Grade 2H Unalloyed titanium (Grade 2 with 58 ksi minimum UTS).

Grade 3 Unalloyed titanium, medium oxygen.

Grades 1-4 are unalloyed and considered commercially pure or “CP”. Generally the tensile and yield strength goes up with grade number for these “pure” grades. The difference in their physical properties is primarily due to the quantity of interstitial elements. They are used for corrosion resistance applications where cost, ease of fabrication, and welding are important.
Grade 5, also known as Ti6Al4V, Ti-6Al-4V or Ti 6-4, is the most commonly used alloy. It has a chemical composition of 6% aluminium, 4% vanadium, 0.25% (maximum) iron, 0.2% (maximum) oxygen, and the remainder titanium.[5] It is significantly stronger than commercially pure titanium while having the same stiffness and thermal properties (excluding thermal conductivity, which is about 60% lower in Grade 5 Ti than in CP Ti).[6] Among its many advantages, it is heat treatable. This grade is an excellent combination of strength, corrosion resistance, weld and fabricability.

“This alpha-beta alloy is the workhorse alloy of the titanium industry. The alloy is fully heat treatable in section sizes up to 15mm and is used up to approximately 400°C (750°F). Since it is the most commonly used alloy – over 70% of all alloy grades melted are a sub-grade of Ti6Al4V, its uses span many aerospace airframe and engine component uses and also major non-aerospace applications in the marine, offshore and power generation industries in particular.”[7]

“Applications: Blades, discs, rings, airframes, fasteners, components. Vessels, cases, hubs, forgings. Biomedical implants.”[5]

Now I know, that’s why people use Grade 5, and that’s what I am looking for. Specifically, 0.08″/2mm titanium wire. They call it wire rather than rod when it’s thinner than about 0.125″ I believe, give or take. Anyway, for stuff of about 2mm it’s wire, no matter what the cutoff point.

Protecting silnylon against misting in heavy driven rains

August 19th, 2014 by h2

I came across this very good explanation of how to add a bit more silicone to your silnylon tent/tarp to protect against heavy driven rain, which causes inner misting. I was not completely sure that this actually happens, until my last trip, where it clearly happened. All doubt was removed in my case because I had pitched the tent on a dry spot, relatively, thunder was booming in the distance, then it started to rain, then almost immediately, a heavy hail (3/8 inch or so), I got in my tent, zero time for condensation to form, and the misting started instantly, it’s very clear and defined, nothing to do with condensation, so if you read people trying to pretend this phenomena is just inner condensation getting knocked off by the outer rain, they don’t know what they are talking about, but probably think they do.

In an unrelated heavy rain in Norway discussion thread Eric Blumensaadt gave this excellent short summary on how to treat your silnylon to fix the misting problem, I’ve read several, and this one seems to be about perfect, thanks.

Re-coat the silnylon tent with a 5:1 ratio by volume of 5 parts of odorless mineral spirits to 1 part clear GE Silicone II (or European equivalent). Place in a suitably sized jar with a tight lid. Shake well to mix and shake every 5 minutes while using.

Apply in sections with a very short nap, narrow paint roller – pour small amounts in a roller pan. You can also use a fine bristle brush. Spreading the tent sections on a smooth top table is far better than using the floor.

BE SURE to wipe the excess off each section immediately with a heavy duty paper towel (“shop towel”). Rolling on the mix is faster and gives a more even coat than brushing. Wiping immediately after leaves only the necessary amount on the silnylon, thus reducing weight AND GREATLY REDUCES DRYING TIME by days. Silnylon floors or ground cloths (“footprints”) can be coated twice using this method for a heavier coating.

BTW, this procedure will seal the tent exterior seams but I would recommend also coating the interior seams as well. If seams ever leak after this treatment (doubtful) use a 3:1 ratio of mineral spirits to clear silicone caulk for re-sealing. Do NOT wipe this seam seal treatment. Just let it dry in the hot sun. The Netherlands does have hot days, right? My experience with Dutch weather was in late October when it was cold and rainy.

I didn’t want this little gem to just vanish in the never ending churn of gear talk etc on Backpackinglight.com, so I am saving it here so it doesn’t get lost.

Technically, I believe you can use Coleman white gas type fuel instead of the mineral spirits, and I believe silicone cures better in humid climate, though I’m not positive about that. Also of course, it’s hard to use rollers if you don’t have a big work space.

Making a Simple Lightweight Backpacking Alcohol Stove Wind-Heat Screen out of Flashing

August 15th, 2013 by h2

This article is part of a related series of fuel/stove articles:

One of the keys to efficient boiling/cooking with alcohol stoves is the stove screen/heat shield. There are several components to constructing an efficient stove system, and the most important one is the wind/heat screen.

This screen will work well with Sgt. Rock’s Ion stove or Mark Jurey Penny Stove, or most other types, and should get you close to the maximum efficiency you can get with a flat rolled screen. For other options, see cone type screens and bent in screens (like FlatCat Gear uses). I wanted something a bit simpler than these types of screens however, one that rolls up neatly inside your pot, slots into itself with no weird or unwieldy connector methods.

I have to thank Sgt. Rock, who helped me figure out some of the intricacies of making an efficient stove. His Ion stove / screen / stand system still remains probably the most efficient and simple setup anyone has ever created.

This design is tested fairly extensively and is a little bit different, and more sturdy, than what Sgt Rock has on his site, but the core ideas are the same.

Core Concepts and Goals of Efficient Screens

The ideas behind efficient screens are not that complicated, but some are a bit counter-intuitive.

  • Screen should be quite close fitting, about 1/4″ (6mm) from side of pot gap.
  • Screen should not be too tall. For most pots, 4″ (10cm) is about right.
  • Critical: enough air must enter into burning chamber to allow fuel to not overheat. This is where many screens fail, including most of my earlier attempts, but I did not realize this was the cause. I discovered this by long trial and error, primarily by lifting up fresh, non-holed screens with paper clip legs, then noting that gave me the best efficiency by far of all methods I had tried. Then it was simple math to calculate how many total square inches of air inlet that roughly 1/8″ to 3/16″ (3-4mm) created, then to duplicate that with air holes. The reason you see somewhat jagged airholes on the following completed pictures is that I do not have a punch that creates long air holes, so I formed them by punching out holes, cutting between them with small scissors, then punching a few more pieces off. This creates a few issues with wind, that are however easily resolved.
  • The real key: the screen acts much more like a piston cylinder/carburator than a wind screen. The trick is to get the optimal air/fuel mixture, and to create the best burn chamber possible. This was the hardest point for me to understand, and it took a great deal of testing to confirm what sgt rock had told me via email about this question.

Furthermore, based on some touchy and slightly irksome designs I’d used before, I had the following practical goals for this screen design:

  • Screen should be made out of aluminum flashing, which is easy to get, and very strong, and can be stored inside the pot easily by rolling it up. This material is springy enough to where it generally opens fine to its desired diameter.
  • Screen should have a simple, essentially foolproof method of connecting the two ends. Since I’ve been sewing a lot, a bit of trial and error showed me that a basic flat felled type connection was perfect.
  • Screen should not require awkward storage methods, like most cones do, and should above all be as simple as possible, yet yield the most efficient boils possible, on par with something like the Caldera Cone.

After a decent amount of testing, here is a how to on constructing this screen.
Read the rest of this entry »

Fuel Consumption and Pack Weight for Alcohol – Esbit – Canister – White Gas Backpacking Stoves

August 1st, 2013 by h2

There’s a lot of myths about fuel/stove weight for trip lengths of various days. This page compares consumption weights between several types of setups, over different time frames, using an easy to read table of weights per day/night of the trip, broken into stove / fuel types. As you will see in the table below, basically, an efficient alcohol/esbit stove system will always weigh less at all points of the trip, no matter how many days. This is because the container for canister stove gas weighs about the same as the gas, for 100gm containers, and about 2/3 of the net gas weight for 220 gm canisters.

This article first compared just gas canister to alcohol, but has been expanded to include Esbit and White Gas stove systems.

Of course, all this ignores the sheer silence, clean burning, and beauty of an alcohol stove, plus of course the simplicity, and super light weight of any decent alcohol stove setup, which is the real reason I like these things.

-> Go directly to fuel consumption/carry weight tables.

Basic Fuel Consumption/Pack Weights

See the full tables for fuel consumption/pack weight per day.

Short version, assuming 2 cups boiled two times a day, you will never carry more weight with an efficient alcohol/esbit stove, and you will only carry more weight with a less efficient one on the first day of a 12 day trip. You will basically never make up for the heavier canister container weight, and the heavier stove weight, and you will always never really know how much fuel you truly have left with the canister, whereas with the alcohol, you can very precisely measure out the fuel per boil, knowing exactly what you need to bring and what you can use per day.

Basic testing / efficiency parameters

Alcohol

Alcohol stove comparisons in this chart show two types, one, a very easy to make, fill, and light Ion type stove, and two, a less efficient stove, but faster boiling, like the Penny stove, that requires about 2/3 fluid ounce to boil 2 cups of water. Since a lot of people still use these less efficient alcohol stoves, I thought it would be fair to include that type in the weight comparisons.
Read the rest of this entry »

Make your own Ion Alcohol Fuel Stove – Half Ounce SLX 2 cups of water boil

June 30th, 2013 by h2

stove pictures

This is the setup I am using for these tests, screen, 2″ pot stand, 1.25″ tall stove, 4″ wind / heat screen, and a 900 ml Snowpeak titanium tall pot. I have also tested on a 600 ml stainless steel pot and that also works, though not quite as well as the ti pot. These are further references you can use to help you create and build the stove/screen/stand:

Note, see below for pot stand dimensions for Ion stove, the version linked to above is taller and wider, for a Penny large stove.

Thanks to Sgt. Rock for his Original Ion Designs and Tests

Before I say anything more, I want to thank Sgt Rock, the creator of the Ion stove for his assistance, and for his generosity with his time and knowledge, in finally cracking the .5 oz boil barrier. Everything here is based on his work, including some tips he gave me via email which proved to be absolutely critical, plus a few pointers that might not be totally obvious from his how-tos in terms of how to make the screens and pot stands and stoves.

Stove Design Goals

Here were my design goals as they evolved over some trips using a Mark Jurey Penny Stove, in several versions, with a few heights of wind/heat screens, 5″ to 6″. Because the penny stove has some advantages in terms of speed and wind resistance that the Ion stove may not have, I will do another how to on the penny stove at a later date, but this how to is going to be about how to create a realworld stove that has the following qualities:

  1. First, and foremost: must boil water using a narrow pot, using no more than 15ml fuel.
  2. Next, must boil using standard denatured alcohols like SLX, which you can find at any hardware store and even some larger supermarkets. This is also the fuel you are most likely to actually find hiking in the US in trail towns, so making this a requirement makes sense, particularly when sgt rock noted that this is what he achieved his legendary 12ml / 2 cups boil Ion with a .9 liter wide pot, which I will discuss a bit more in the conclusion.
  3. Stove must be easy to light, and require no priming. The penny stove is not that hard to light once you learn how to do it, but it’s a bit too finicky for my taste, too much priming, and you lose fuel as it flares up, too little, and you have to redo it.
  4. Screen / heat shield must be easy to use and fit inside of pot without any excessive gymnastics.
  5. Uses a pot stand. This is a very core requirement, because almost all stoves that require priming and pressurization from the pot set on top of it are not only not super stable, but waste heat while you wait for the stove to heat up. The penny does not have this issue.
  6. As a sub-requirement, and as an outcome of approaching the 15ml goal, fuel for a week, real cooking, on a real trip, should fit in an 8oz container, ie, small, compact.
  7. To repeat, must do all this using a narrow pot (ie, a pot that is taller than it is wide), 600ml to 900 ml.
  8. Must work out of the workshop, ie, outside, in various temperatures. See fuel efficiency thread appendix on altitude and boil times/temps / water temperature.
  9. Must nullify any claimed weight advantage of using a non renewable cannister stove with higher BTU gas as fuel source.
  10. Screen must be easy to store in pot, and must allow connecting each end to the other without extra steps or tools. I used to use bolts to hold it together with wing nuts, but it was too finicky for my taste.
  11. Stand must fold up for storage in the pot without taking up any real room
  12. Light weight. But that’s a given, it’s going to be light.

Sparing you the suspense, all of these goals are now met. Short version: pick one, efficiency or speed.
Read the rest of this entry »